Los fragmentos de roca. Origen e influencia en la infiltración y propiedades hidráulicas de los suelos
Los suelos con fragmentos de roca (FR) están estrechamente ligados a la génesis de las geoformas de los cuales hacen parte, si bien, poseen muchas de las propiedades de su material parental, en ocasiones existe influencia de materiales externos (exsitu). Los FR ejercen una compleja influencia sobre los procesos hidrológicos del suelo (infiltración, evapotranspiración, generación de escorrentía, entre otros) y tienen una alta relevancia en el comportamiento de sus propiedades hidráulicas (PHS) (conductividad hidráulica saturada e insaturada y capacidad de retención de agua en el suelo). En esta recopilación, se hizo especial énfasis en la búsqueda de información que permitiera explicar la génesis del suelo y su relación con los fragmentos de roca, así como la influencia de estos sobre estas propiedades hidrodinámicas de los suelos. Esta revisión fue realizada mediante el análisis minucioso de la literatura publicada en diferentes lugares del mundo y en diferentes épocas, a partir de la consulta en diversas bases de datos y documentos relacionados con el tema de interés. En total se consultaron 163 documentos, de los cuales el más antiguo data del año 1943. Los resultados permiten afirmar que los efectos de los FR sobre estas propiedades de los suelos pueden ser positivos, negativos, y en algunos casos, ambivalentes. Las metodologías aplicadas para el estudio de la infiltración y PHS en suelos con FR, tanto en campo como en laboratorio, son diversas, y no se observa un consenso en métodos específicos. El comportamiento de la infiltración y propiedades hidráulicas en suelos con fragmentos está muy relacionado con las características de los FR, tales como: contenido, tamaño, distribución, orientación, naturaleza y posición en el perfil, entre otras; lo cual explica la dificultad para la unificación de criterios en esta temática. Se encontró también que en los suelos de los países del trópico es donde menos se han realizado investigaciones sobre el tema, y, por el contrario, estas se han concentrado en países como EE.UU, China y España. Con esta revisión se espera contribuir con el conocimiento sobre la caracterización y comportamiento de los suelos con fragmentos de roca.
-
Introducción
-
Origen de los fragmentos de roca en el suelo y su relacion con el paisaje
-
Generalidades sobre las propiedades hidráulicas y los fragmentos de roca en el suelo
-
Efecto de los fragmentos de roca en la infiltración de agua en el suelo
-
Efecto de los fragmentos de roca en la conductividad hidráulica del suelo
-
Efecto de los fragmentos de roca en la capacidad de retención de agua del suelo
-
Perspectivas en la investigación de la influencia de los fragmentos de roca sobre la infiltración y propiedades hidráulicas de los suelos
Abrahams, A. D. y Parsons, A. J. (1991). Relation between infiltration and stone cover on a semiarid hillslope, southern Arizona. Journal of Hydrology, 122?(1-4), 49-59. https://doi.org/10.1016/0022-1694(91)90171-D
Adams, J. E. (1966). Influence of mulches on runoff, erosion, and soil moisture depletion. Soil Science Society of America Journal, 30?(1), 110-114. https://doi.org/10.2136/sssaj1966.03615995003000010036x
Agassi, M. y Levy, G. J. (1991). Stone-cover and rain intensity: Effects on infiltration, erosion and water splash. Australian Journal of Soil Research, 29?(4), 565-575. https://doi.org/10.1071/SR9910565
Al-Qinna, M. I., Salahat, M. A. y Shatnawi, Z. N. (2008). Effect of carbonates and gravel contents on hydraulic properties in gravely-calcareous soils. Dirasat, Agricultural Sciences, 35?(3), 145-158.
Al-Qinna, M., Scott, H. D., Brye, K. R., Van Brahana, J., Sauer, T. J. y Sharpley, A. (2014). Coarse fragments affect soil properties in a mantled-karst landscape of the Ozark highlands. Soil Science, 179?(1), 42-50. https://doi.org/10.1097/SS.0000000000000034
Al-Yahyai, R., Schaffer, B., Davies, F. S. y Muñoz-Carpena, R. (2006). Characterization of soil-water retention of a very gravelly loam soil varied with determination method. Soil Science, 171?(2), 85-93. https://doi.org/10.1097/01.ss.0000187372.53896.9d
Alvarez-Acosta, C., Lascano, R. J. y Stroosnijder, L. (2012). Test of the Rosetta pedotransfer function for saturated hydraulic conductivity. Open Journal of Soil Science, 02?(03), 203-212. https://doi.org/10.4236/ojss.2012.23025
Arias, N., Virto, I., Enrique, A., Bescansa, P., Walton, R. y Wendroth, O. (2019). Effect of stoniness on the hydraulic properties of a soil from an evaporation experiment using the wind and inverse estimation methods. Water, 11?(3), 440. https://doi.org/10.3390/w11030440
Baetens, J. M., Verbist, K., Cornells, W. M., Gabriels, D. y Soto, G. (2009). On the influence of coarse fragments on soil water retention. Water Resources Research, 45?(7), 1-14. https://doi.org/10.1029/2008WR007402
Bagarello, V. y Iovino, M. (2007). Comments on “Predicting the effect of rock fragments on saturated soil hydraulic conductivity.” Soil Science Society of America Journal, 71(January 2014), 1584. https://doi.org/10.2136/sssaj2007.0193L
Bear, J. (1972). Dynamics of fluids in porous media. Elsevier.
Beckers, E., Pichault, M., Pansak, W., Degré, A. y Garré, S. (2016). Characterization of stony soils’ hydraulic conductivity using laboratory and numerical experiments. Soil, 2?(3), 421-431. https://doi.org/10.5194/soil-2-421-2016
Beven, K. (2012). Rainfall-Runoff Modelling. En Rainfall-Runoff Modelling: The Primer (2.a ed.). John Wiley & Sons. https://doi.org/10.1002/9781119951001
Boateng, E., Yangyuoru, M., Breuning-Madsen, H. y MacCarthy, D. S. (2013). Characterization of soil-water retention with coarse fragments in the Densu Basin of Ghana. West African Journal of Applied Ecology, 21?(1), 31-46.
Bouma, J. (1989). Using soil survey data for quantitative land evaluation. En B. A. Stewart (ed.), Advances in Soil Science (vol. 9, pp. 177-213). Springer. https://doi.org/10.1007/978-1-4612-3532-3_4
Bouwer, H. y Rice, R. C. (1984). Hydraulic properties of stony vadose zones. Groundwater, 22?(6), 696-705. https://doi.org/10.1111/j.1745-6584.1984.tb01438.x
Box, J. E. (1981). The effects of surface slaty fragments on soil erosion by water. Soil Science Society of America Journal, 45?(1), 111-116. https://doi.org/10.2136/sssaj1981.03615995004500010024x
Brakensiek, D. L. y Rawls, W. J. (1994). Soil containing rock fragments: effects on infiltration. Catena, 23?(1-2), 99-110. https://doi.org/10.1016/0341-8162(94)90056-6
Brakensiek, D. L., Rawls, W. J. y Stephenson, G. R. (1986). Determining the saturated hydraulic conductivity of a soil containing rock fragments. Soil Science Society of America Journal, 50?(3), 834-835. https://doi.org/10.2136/sssaj1986.03615995005000030053x
Brilhante, S. A., Santos, J. C. B. dos, Souza Júnior, V. S. de, Araújo, J. K. S., Ribeiro Filho, M. R. y Corrêa, M. M. (2017). Weathering of rhyolites and soil formation in an atlantic forest fragment in northeastern Brazil. Revista Brasileira de Ciência Do Solo, 41?(1), 1-18. https://doi.org/10.1590/18069657rbcs20160558
Brooks, R. H. y Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers 3, Colorado State University, Fort Collins. En Hydrology Papers 3, Colorado State University, Fort Collins (vol. 3). https://doi.org/citeulike-article-id:711012
Brouwer, J. A. y Anderson, H. (2000). Water holding capacity of ironstone gravel in a Typic Plinthoxeralf in southeast Australia. Soil Science Society of America Journal, 64?(5), 1603-1608. https://doi.org/10.2136/sssaj2000.6451603x
Buchter, B., Hinz, C., Flury, M. y Fluhler, H. (1995). Heterogeneous flow and solute transport in an unsaturated stony soil monolith. Soil Science Society of America Journal, 59?(1), 14-21. https://doi.org/10.2136/sssaj1995.03615995005900010002x
Calvo-Cases, A., Boix-Fayos, C. y Imeson, A. C. (2003). Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain. Geomorphology, 50?(1-3), 269-291. https://doi.org/10.1016/S0169-555X(02)00218-0
Cassel, D. K. y Nielsen, D. R. (1986). Field capacity and available water capacity. En A. Klute (ed.), Methods of Soil Analysis: Part 1 —Physical and Mineralogical Methods. SSSA Book Ser. 5.1. (pp. 901-926). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c36
Cerdá, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52?(1), 59-68. https://doi.org/10.1046/j.1365-2389.2001.00354.x
Chamizo, S., Cantón, Y., Lázaro, R., Solé-Benet, A. y Domingo, F. (2012). Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems, 15?(1), 148-161. https://doi.org/10.1007/s10021-011-9499-6
Chapuis, R. P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41?(5), 787-795. https://doi.org/10.1139/t04-022
Chen, H., Liu, J., Zhang, W. y Wang, K. (2012). Soil hydraulic properties on the steep karst hillslopes in northwest Guangxi, China. Environmental Earth Sciences, 66?(1), 371-379. https://doi.org/10.1007/s12665-011-1246-y
Chow, T. L. y Rees, H. W. (1995). Effects of coarse-fragment content and size on soil erosion under simulated rainfall. Canadian Journal of Soil Science, 75?(2), 227-232. https://doi.org/10.4141/cjss95-031
Chow, T. L., Rees, H. W. y Moodie, R. L. (1992). Effects of stone removal and stone crushing on soil properties, erosion and potato quality. Soil Science, 153?(3), 242-249. https://doi.org/10.1097/00010694-199203000-00008
Clothier, B. E., Scotter, D. R. y Kerr, J. P. (1977). Water retention in soil underlain by a coarse-textured layer. Soil Science, 123?(6), 392-399. https://doi.org/10.1097/00010694-197706000-00008
Conrad, C. M., Ritzi, R. W. y Dominic, D. F. (2008). Air-based measurements of permeability in pebbly sands. Ground Water, 46?(1), 103-112. https://doi.org/10.1111/j.1745-6584.2007.00379.x
Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M. A. y Basile, A. (2013). Measuring and modeling water content in stony soils. Soil and Tillage Research, 128, 9-22. https://doi.org/10.1016/j.still.2012.10.006
Coppola, Antonio, Comegna, A., Dragonetti, G., Dyck, M., Basile, A., Lamaddalena, N., Kassab, M. y Comegna, V. (2011). Solute transport scales in an unsaturated stony soil. Advances in Water Resources, 34?(6), 747-759. https://doi.org/10.1016/j.advwatres.2011.03.006
Corey, A. T. y Kemper, W. D. (1968). Conservation of Soil Water by Gravel Mulches. Hidrology Papers, 30.
Cousin, I., Nicoullaud, B. y Coutadeur, C. (2003). Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena, 53?(2), 97-114. https://doi.org/10.1016/S0341-8162(03)00037-7
Dadkhah, M. y Gifford, G. F. (1980). Influence of vegetation, rock cover, and trampling on infiltration rates and sediment production. Journal of the American Water Resources Association, 16?(6), 979-986. https://doi.org/10.1111/j.1752-1688.1980.tb02537.x
Danalatos, N. G., Kosmas, C. S., Moustakas, N. C. y Yassoglou, N. (1995). Rock fragments II. Their impact on soil physical properties and biomass production under Mediterranean conditions. Soil Use and Management, 11?(3), 121-126. https://doi.org/10.1111/j.1475-2743.1995.tb00509.x
Dann, R., Close, M., Flintoft, M., Hector, R., Barlow, H., Thomas, S. y Francis, G. (2009). Characterization and Estimation of Hydraulic Properties in an Alluvial Gravel Vadose Zone. Vadose Zone Journal, 8?(3), 651-663. https://doi.org/10.2136/vzj2008.0174
De Figueiredo, T. y Poesen, J. (1998). Effects of surface rock fragment characteristics on interrill runoff and erosion of a silty loam soil. Soil and Tillage Research, 46(1-2), 81-95. https://doi.org/10.1016/S0167-1987(98)80110-4
Dunn, A. J. y Mehuys, G. R. (1984). Relationship Between Gravel Content of Soils and Saturated Hydraulic Conductivity in Laboratory Tests. En J. D. Nichols, P. L. Brown y W. J. Grant (eds.), Erosion and Productivity of Soils Containing Rock Fragments. SSSA Special Publication 13 (pp. 55-63). https://doi.org/10.2136/sssaspecpub13.c6
Epstein, E. y Grant, W. J. (1966). Rock and crop-management effects on runoff and erosion in a potato-producing area. Transactions of the ASAE, 9?(6), 0832-0833. https://doi.org/10.13031/2013.40109
Fennemore, G. G. y Warrick, A. W. (1997). Simulation of unsaturated water flow around obstructions: Three-dimensional Rankine bodies. Advances in Water Resources, 20?(1), 15-22. https://doi.org/10.1016/S0309-1708(96)00010-3
Fies, J. C., De Louvigny, N. y Chanzy, A. (2002). The role of stones in soil water retention. European Journal of Soil Science, 53?(1), 95-104. https://doi.org/10.1046/j.1365-2389.2002.00431.x
Fleming, R. L., Black, T. A. y Eldridge, N. R. (1993). Water-content, bulk-density, and coarse fragment content measurement in forest soils. Soil Science Society of America Journal, 57?(1), 261-270. https://doi.org/10.2136/sssaj1993.03615995005700010045x
Flint, A. L. y Childs, S. (1984). Physical properties of rock fragments and their effect on available water in skeletal soils. En Erosion and poductivity of soils containing rock fragments. SSSA Special Publication 13 (pp. 91-101). Soil Science Society America. https://doi.org/10.2136/sssaspecpub13.c10
Gabriels, D., Lobo, D. y Pulido, M. (2006). Métodos para determinar la conductividad hidráulica saturada y no saturada de los suelos. Venesuelos, 14?(1), 7-22. http://venesuelos.org.ve/index.php/venesuelos/article/view/102
Gardi, C., Angelini, M., Barceló, S., Comerma, J., Cruz Gaistardo, C., Encina Rojas, A., Jones, A., Krasilnikov, P., Brefin Mendonça Santos, M. L., Montanarella, L., Muñiz Ugarte, O., Schad, P., Vara Rodríguez, M. ., Vargas, R. y Ravina da Silva, M. (eds.). (2014). Soil atlas of Latin America and the Caribbean. European Commission, Publications Of?ce of the European Union.
Gong, T., Zhu, Y. y Shao, M. (2018). Effect of embedded-rock fragments on slope soil erosion during rainfall events under simulated laboratory conditions. Journal of Hydrology, 563, 811-817. https://doi.org/10.1016/j.jhydrol.2018.06.054
Gordillo-Rivero, Á. J., García-Moreno, J., Jordán, A., Zavala, L. M. y Granja-Martins, F. M. (2014). Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrological Processes, 28?(24), 5832-5843. https://doi.org/10.1002/hyp.10072
Grant, W. J. y Struchtemeyer, R. A. (1959). Influence of the coarse fraction in two Maine potato soils on infiltration, runoff and erosion. Soil Science Society of America Journal, 23?(5), 391-394. https://doi.org/10.2136/sssaj1959.03615995002300050028x
Grath, S. M., Ratej, J., Jovi?i?, V. y Curk, B. ?. (2015). Hydraulic characteristics of alluvial gravels for different particle sizes and pressure heads. Vadose Zone Journal, 14?(3), 1-18. https://doi.org/10.2136/vzj2014.08.0112
Guo, T., Wang, Q., Li, D. y Zhuang, J. (2010). Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi-arid loess region of northwestern China. Journal of Soils and Sediments, 10?(6), 1200-1208. https://doi.org/10.1007/s11368-010-0257-8
Gutierrez, J. J. y Vallejo, L. E. (2013). Laboratory Experiments on the Hydraulic Conductivity of Sands with Dispersed Rock Particles. Geotechnical and Geological Engineering, 31?(4), 1405-1410. https://doi.org/10.1007/s10706-013-9652-4
Hanson, C. T. y Blevins, R. L. (1979). Soil Water in Coarse Fragments. Soil Science Society of America Journal, 43?(4), 819-820. https://doi.org/10.2136/sssaj1979.03615995004300040044x
Herrick, J. E., Van Zee, J. W., Belnap, J., Johansen, J. R. y Remmenga, M. (2010). Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts. Catena, 83?(2-3), 119-126. https://doi.org/10.1016/j.catena.2010.08.007
Hingray, B., Picouet, C. y Musy, A. (2014). Hydrology: A science for engineers (First). CRC Press. https://doi.org/10.1201/b17169
Hlavá?iková, H., Danko, M., Holko, L., Hlav?o, J. y Novák, V. (2016). The Soil Water Regime of Stony Soils in a Mountain Catchment. In EGU General Assembly Conference Abstracts (pp. EPSC2016-462). https://doi.org/10.2136/vzj2007.0077.European
Hlavá?iková, H. y Novák, V. (2014a). A relatively simple scaling method for describing the unsaturated hydraulic functions of stony soils. Journal of Plant Nutrition and Soil Science, 177?(4), 560-565. https://doi.org/10.1002/jpln.201300524
Hlavá?iková, H. y Novák, V. (2014b). Stony soils hydrophysical characteristics. III. Soil water retention. Acta Hydrologica Slovaca, 15?(1), 43-50.
Hlavá?iková, H., Novák, V. y Holko, L. (2015). On the role of rock fragments and initial soil water content in the potential subsurface runoff formation. Journal of Hydrology and Hydromechanics, 63?(1), 71-81. https://doi.org/10.1515/johh-2015-0002
Hlavá?iková, H., Novák, V., Kostka, Z., Danko, M. y Hlav?o, J. (2018). The influence of stony soil properties on water dynamics modeled by the HYDRUS model. Journal of Hydrology and Hydromechanics, 66?(2), 181-188. https://doi.org/10.1515/johh-2017-0052
Hlavá?iková, H., Novák, V., Orfánus, T., Danko, M, y Hlav?o, J. (2014). Stony soils hydrophysical characteristics. I. Hydraulic conductivities. Acta Hydrologica Slovaca, 15?(1), 24-34.
Hlavá?iková, H., Novák, V. & Šim?nek, J. (2016). The effects of rock fragment shapes and positions on modeled hydraulic conductivities of stony soils. Geoderma, 281, 39-48. https://doi.org/10.1016/j.geoderma.2016.06.034
Hung, K.-C., Kosugi, K., Lee, T. H. y Misuyama, T. (2007). The effects of rock fragments on hydrologic and hydraulic responses along a slope. Hydrological Processes, 21?(10), 1354-1362. https://doi.org/10.1002/hyp.6315
Ingelmo, F., Cuadrado, S., Ibañez, A. y Hernandez, J. (1994). Hydric properties of some Spanish soils in relation to their rock fragment content: implications for runoff and vegetation. Catena, 23?(1-2), 73-85. https://doi.org/10.1016/0341-8162(94)90054-X
Instituto Geográfico Agustín Codazzi (2005). Geomorfología aplicada a levantamientos edafológicos y zonificación física de tierras. Instituto Geográfico Agustín Codazzi.
Jean, J. S., Ai, K. F., Shih, K. y Hung, C. C. (2000). Stone cover and slope factors influencing hillside surface runoff and infiltration: Laboratory investigation. Hydrological Processes, 14?(10), 1829-1849. https://doi.org/10.1002/1099-1085(200007)14:10<1829::AID-HYP66>3.0.CO;2-#
Jomaa, S., Barry, D. A., Brovelli, A., Heng, B. C. P., Sander, G. C., Parlange, J. Y. y Rose, C. W. (2012). Rain splash soil erosion estimation in the presence of rock fragments. Catena, 92, 38-48. https://doi.org/10.1016/j.catena.2011.11.008
Jomaa, S., Barry, D. A., Heng, B. C. P., Brovelli, A., Sander, G. C. y Parlange, J. Y. (2013). Effect of antecedent conditions and fixed rock fragment coverage on soil erosion dynamics through multiple rainfall events. Journal of Hydrology, 484, 115-127. https://doi.org/10.1016/j.jhydrol.2013.01.021
Jury, W. A. y Bellantuoni, B. (1976). Heat and water movement under surface rocks in a field soil: II. Moisture effects. Soil Science Society of America Journal, 40?(4), 509-513. https://doi.org/10.2136/sssaj1976.03615995004000040018x
Kamann, P. J., Ritzi, R. W., Dominic, D. F. y Conrad, C. M. (2007). Porosity and Permeability in Sediment Mixtures. Ground Water, 45?(4), 429-438. https://doi.org/10.1111/j.1745-6584.2007.00313.x
Katra, I., Lavee, H. y Sarah, P. (2008). The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena, 72?(1), 49-55. https://doi.org/10.1016/j.catena.2007.04.001
Kemper, W. D., Nicks, A. D. y Corey, A. T. (1994). Accumulation of water in soils under gravel and sand mulches. Soil Science Society of America Journal, 58?(1), 56-63. https://doi.org/10.2136/sssaj1994.03615995005800010008x
Khaleel, R. y Relyea, J. F. (1997). Correcting laboratory-measured moisture retention data for gravels. Water Resources Research, 33?(8), 1875-1878. https://doi.org/10.1029/97WR01068
Khaleel, R. y Heller, P. R. (2003). On the hydraulic properties of coarse-textured sediments at intermediate water contents. Water Resources Research, 39?(9), 1233-1237 https://doi.org/10.1029/2003WR002387
Khaleel, R. y Relyea, J. F. (2001). Variability of Gardner’s ? for coarse-textured sediments. Water Resources Research, 37?(6), 1567-1575. https://doi.org/10.1029/2000WR900398
Khetdan, C., Chittamart, N., Tawornpruek, S., Kongkaew, T., Onsamrarn, W. y Garré, S. (2017, mar.). Influence of rock fragments on hydraulic properties of Ultisols in Ratchaburi province, Thailand. Geoderma Regional, 10, 21-28. https://doi.org/10.1016/j.geodrs.2017.04.001
Klik, A., Schürz, C., Strohmeier, S., Demelash Melaku, N., Ziadat, F., Schwen, A. y Zucca, C. (2018). Impact of stone bunds on temporal and spatial variability of soil physical properties: A field study from northern Ethiopia. Land Degradation and Development, 29?(3), 585-595. https://doi.org/10.1002/ldr.2893
Klute, A. y Dirksen, C. (1986). Hydraulic conductivity and diffusivity: laboratory methods. En A. Klute (ed.), Methods of Soil Analysis (p. 1, Physical and Mineralogical Methods. SSSA Book Ser. 5.1., pp. 68-734). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c28
Koon, J. L., Hendrick, J. G. y Hermanson, R. E. (1970). Some effects of surface cover geometry on infiltration rate. Water Resources Research, 6?(1), 246-253. https://doi.org/10.1029/WR006i001p00246
Lai, X., Zhu, Q., Zhou, Z. y Liao, K. (2018, ago.). Rock Fragment and Spatial Variation of Soil Hydraulic Parameters are Necessary on Soil Water Simulation on the Stony-soil Hillslope. Journal of Hydrology, 565, 354-364. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.08.039
Lamb, J. y Chapman, J. E. (1943). Effect of surface stones on erosion, evaporation, soil temperature, and soil moisture. Agronomy Journal, 35?(7), 567-578. https://doi.org/10.2134/agronj1943.00021962003500070003x
Lavee, H y Poesen, J. W. A. (1991). Overland flow generation and continuity on stone-covered soil surfaces. Hydrological Processes, 5?(4), 345-360. https://doi.org/10.1002/hyp.3360050403
Lavee, Hanoch, Poesen, J. y Yair, A. (1997). Evidence of high efficiency water-harvesting by ancient farmers in the Negev Desert, Israel. Journal of Arid Environments, 35?(2), 341-348. https://doi.org/10.1006/jare.1996.0170
Li, X. Y., Contreras, S. y Solé-Benet, A. (2008). Unsaturated hydraulic conductivity in limestone dolines: Influence of vegetation and rock fragments. Geoderma, 145?(3-4), 288-294. https://doi.org/10.1016/j.geoderma.2008.03.018
Li, X. Y. (2003). Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena, 52?(2), 105-127. https://doi.org/10.1016/S0341-8162(02)00181-9
Liu, D. y She, D. (2017). Can rock fragment cover maintain soil and water for saline-sodic soil slopes under coastal reclamation? Catena, 151, 213-224. https://doi.org/10.1016/j.catena.2016.12.020
Lv, J., Luo, H. y Xie, Y. (2019, ago.). Effects of rock fragment content, size and cover on soil erosion dynamics of spoil heaps through multiple rainfall events. Catena, 172, 179-189. https://doi.org/10.1016/j.catena.2018.08.024
Ma, D. y Shao, M. (2008). Simulating infiltration into stony soils with a dual-porosity model. European Journal of Soil Science, 59?(5), 950-959. https://doi.org/10.1111/j.1365-2389.2008.01055.x
Ma, DongHao, Shao, M., Zhang, J. y Wang, Q. (2010). Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data. Geoderma, 159?(3-4), 262-269. https://doi.org/10.1016/j.geoderma.2010.08.001
Mace, A., Rudolph, D. L. y Kachanoski, R. G. (1998). Suitability of Parametric models to describe the hydraulic properties of an unsaturated coarse sand and gravel. Ground Water, 36?(3), 465-475. https://doi.org/10.1111/j.1745-6584.1998.tb02818.x
Mandal, U. K., Rao, K. V., Mishra, P. K., Vittal, K. P. R., Sharma, K. L., Narsimlu, B. y Venkanna, K. (2005). Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain. European Journal of Soil Science, 56(4), 435-443. https://doi.org/10.1111/j.1365-2389.2004.00687.x
Mayor, Á. G., Bautista, S. y Bellot, J. (2009). Factors and interactions controlling infiltration, runoff, and soil loss at the microscale in a patchy Mediterranean semiarid landscape. Earth Surface Processes and Landforms, 34?(12), 1702-1711. https://doi.org/10.1002/esp.1875
Mehuys, G. R., Stolzy, L. H., Letey, J. y Weeks, L. V. (1975). Effect of stones on the hydraulic conductivity of relatively dry desert soils. Soil Science Society of America Journal, 39?(1), 37-42. https://doi.org/10.2136/sssaj1975.03615995003900010013x
Mi, M., Shao, M. y Liu, B. (2016). Effect of rock fragments content on water consumption, biomass and water-use efficiency of plants under different water conditions. Ecological Engineering, 94, 574-582. https://doi.org/10.1016/j.ecoleng.2016.06.044
Milczarek, M., Rice, R. C., Trevino, M. y van Zyl, D. (2016). Saturated and unsaturated hydraulic properties characterization at mine facilities: are we doing it right? En R. I. Barnhisel (ed.), 7th International Conference on Acid Rock Drainage (ICARD) (pp. 26-30). http://www.gsanalysis.com/publications/Milczarek_Rice_vanZyl_2005.pdf
Miller, F. T. y Guthrie, R. L. (1984). Classification and distribution of soils containing rock fragments in the United States. En J. D. Nichols, P. L. Brown y W. J. Grant (eds.), Erosion and poductivity of soils containing rock fragments (pp. 1-6). SSSA Special Publication 13. https://doi.org/10.2136/sssaspecpub13.c1
Miller, R. B., Heeren, D. M., Fox, G. A., Halihan, T., Storm, D. E. y Mittelstet, A. R. (2014). The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains. Journal of Hydrology, 513, 229-240. https://doi.org/10.1016/j.jhydrol.2014.03.046
Minasny, B. y Hartemink, A. E. (2011). Predicting soil properties in the tropics. Earth-Science Reviews, 106?(1-2), 52-62. https://doi.org/10.1016/j.earscirev.2011.01.005
Minasny, B. y McBratney, A. B. (2003). Integral energy as a measure of soil-water availability. Plant and Soil, 249, 253-262. https://doi.org/10.1023/A:1022825732324
Minasny, B., McBratney, A. B. y Bristow, K. L. (1999). Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93?(3-4), 225-253. https://doi.org/10.1016/S0016-7061(99)00061-0
Montagne, C., Ruddell, J. y Ferguson, H. (1992). Water retention of soft siltstone fragments in a Ustic Torriorthent, Central Montana. Soil Science Society of America Journal, 56?(2), 555-557. https://doi.org/10.2136/sssaj1992.03615995005600020033x
Moretti, L. M. y Morrás, H. J. M. (2018). Líneas de piedra en suelos del noreste argentino. Origen e implicancias. En P. Imbellone y C. Álvarez (eds.), Compactaciones naturales y antrópicas en suelos argentinos (pp. 89-120). Asociación Argentina de la Ciencia del Suelo.
Nasri, B., Fouché, O. y Torri, D. (2015). Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena, 131, 99-108. https://doi.org/10.1016/j.catena.2015.03.018
Neave, M. y Rayburg, S. (2007). A field investigation into the effects of progressive rainfall-induced soil seal and crust development on runoff and erosion rates: The impact of surface cover. Geomorphology, 87?(4), 378-390. https://doi.org/10.1016/j.geomorph.2006.10.007
Novák, V. y K?ava, K. (2012). The influence of stoniness and canopy properties on soil water content distribution: Simulation of water movement in forest stony soil. European Journal of Forest Research, 131?(6), 1727-1735. https://doi.org/10.1007/s10342-011-0589-y
Novák, V., K?ava, K. y Šim?nek, J. (2011). Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma, 161?(3-4), 177-181. https://doi.org/10.1016/j.geoderma.2010.12.016
Oostwoud Wijdenes, D. J. y Poesen, J. (1999). The effect of soil moisture on the vertical movement of rock fragments by tillage. Soil and Tillage Research, 49?(4), 301-312. https://doi.org/10.1016/S0167-1987(98)00185-8
Oyonarte, C., Escoriza, I., Delgado, R., Pinto, V. y Delgado, G. (1998). Water-retention capacity in fine earth and gravel fractions of semiarid Mediterranean Montane soils. Arid Soil Research and Rehabilitation, 12?(1), 29-45. https://doi.org/10.1080/15324989809381495
Pakparvar, M., Cornelis, W., Gabriels, D., Mansouri, Z. y Kowsar, S. A. (2016). Enhancing modelled water content by dielectric permittivity in stony soils. Soil Research, 54?(3), 360-370. https://doi.org/10.1071/SR15154
Parajuli, K. K., Sadeghi, M. y Jones, S. B. (2015, dic.). Rock content influence on soil hydraulic properties. AGU Fall Meeting, 13-14. https://doi.org/10.13140/RG.2.1.3272.0724
Parajuli, K., Sadeghi, M. y Jones, S. B. (2017, dic.). A binary mixing model for characterizing stony-soil water retention. Agricultural and Forest Meteorology, 244-245, 1-8. https://doi.org/10.1016/j.agrformet.2017.05.013
Parajuli, K., Sadeghi, M. y Jones, S. B. (2016). Stone content influence on soil water retention. Resilience Emerging from Scarcity and Abundance —SSSA Annual Meeting, 3-5. https://doi.org/10.13140/RG.2.2.28058.95685
Patil, N. G. y Singh, S. K. (2016). Pedotransfer Functions for Estimating Soil Hydraulic Properties: A Review. Pedosphere, 26?(4), 417-430. https://doi.org/10.1016/S1002-0160(15)60054-6
Peek, A. J. y Watson, J. D. D. (1979). Hydraulic conductivity and ?ow in non-uniform soil. Workshop on Soil Physics and Field Heterogeneity, 31-39.
Pérez, F. L. (1998). Conservation of soil moisture by different stone covers on alpine talus slopes (Lassen, California). Catena, 33?(3-4), 155-177. https://doi.org/10.1016/S0341-8162(98)00091-5
Petersen, G. W., Cunningham, R. L. y Matelski, R. P. (1968). Moisture characteristics of Pennsylvania soils: II. Soil factors affecting moisture retention within a textural class —silt loam. Soil Science Society of America Journal, 32?(6), 866-870. https://doi.org/10.2136/sssaj1968.03615995003200060042x
Philip, J. R. (1957). The theory of infiltration. 1. The infiltration equation and its solution. Soil Science, 85?(5), 345-358.
Pineda, M. C., Viloria, J., Martínez-Casasnovas, J. A., Valera, A., Lobo, D., Timm, L. C., Pires, L. F. y Gabriels, D. (2018). Predicting soil water content at ? 33 kPa by pedotransfer functions in stoniness soils in northeast Venezuela. Environmental Monitoring and Assessment, 190?(3), 161. https://doi.org/10.1007/s10661-018-6528-3
Pla, I. (2010). Medición y evaluación de propiedades físicas de los suelos: dificultades y errores más frecuentes. II-Propiedades hidrológicas. Suelos Ecuatoriales, 40?(2), 94-127.
Poesen, J., Ingelmo?Sanchez, F. y Mucher, H. (1990). The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surface Processes and Landforms, 15?(7), 653-671. https://doi.org/10.1002/esp.3290150707
Poesen, J. y Lavee, H. (1994). Rock fragments in top soils: significance and processes. Catena, 23?(1-2), 1-28. https://doi.org/10.1016/0341-8162(94)90050-7
Poesen, J. y Lavee, H. (1997). How efficient were ancient rainwater harvesting systems in the Negev Desert, Israel. Bull. Séanc. Acad. R. Sci. Outre-Mer Meded. Zitt. K. Acad. Overzeese Wet., 43?(3), 405-419.
Poesen, J. (1986). Surface sealing as influenced by slope angle and position of simulated stones in the top layer of loose sediments. Earth Surface Processes and Landforms, 11?(1), 1-10. https://doi.org/10.1002/esp.3290110103
Poesen, J. y Ingelmo-Sanchez, F. (1992). Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position. Catena, 19?(5), 451-474. https://doi.org/10.1016/0341-8162(92)90044-C
Ravina, I. y Magier, J. (1984). Hydraulic conductivity and water retention of clay soils containing coarse fragments. Soil Science Society of America Journal, 48, 736-740. https://doi.org/10.2136/sssaj1984.03615995004800040008x
Reinhart, K. G. (1961). The problem of stones in soil-moisture measurement. Soil Science Society of America Journal, 25?(4), 268-270. https://doi.org/10.2136/sssaj1961.03615995002500040012x
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1, 318-333.
Rivers, E. D. y Shipp, R. F. (1972). Available water capacity of sandy and gravelly North Dakota soils. Soil Science, 113?(2), 74-80. https://doi.org/10.1097/00010694-197202000-00001
Rostagno, C. M. (1989, sep.). Infiltration and sediment production as affected by soil surface conditions in a shrubland of Patagonia, Argentina. Journal Of Range Management, 42, 5-8. https://doi.org/10.2307/3899544
Rudolph, D. L., Kachanoski, R. G., Celia, M. A., LeBlanc, D. R. y Stevens, J. H. (1996). Infiltration and solute transport experiments in unsaturated sand and gravel, Cape Cod, Massachusetts: Experimental design and overview of results. Water Resources Research, 32?(3), 519-532. https://doi.org/10.1029/95WR02972
Russo, D. (1983). Leaching characteristics of a stony desert soil. Soil Science Society of America Journal, 47?(3), 431-438. https://doi.org/10.2136/sssaj1983.03615995004700030008x
Šály, R. (1978). Pôda základ lesnej produkcie. Príroda.
Sauer, T. J. y Logsdon, S. D. (2002). Hydraulic and physical properties of stony soils in a small watershed. Soil Science Society of America Journal, 66?(6), 1947-1956. https://doi.org/10.2136/sssaj2002.1947
Sauer, T. J., Moore, P. A., Coffey, K. P. y Rutledge, E. M. (1998). Characterizing the surface properties of soils at varying landscape positions in the Ozark highlands. Soil Science, 163?(11), 907-915. https://doi.org/10.1097/00010694-199811000-00008
Saxton, K. E. y Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70?(5), 1569-1578. https://doi.org/10.2136/sssaj2005.0117
Schaap, M. G., Leij, F. J. y van Genuchten, M. T. (2001). Rosetta?: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251?(3-4), 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8
Scheinost, A. C., Sinowski, W. y Auerswald, K. (1997). Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function. Geoderma, 78?(3-4), 129-143. https://doi.org/10.1016/S0016-7061(97)00046-3
Schulin, R., Wierenga, P. J., Flühler, H. y Leuenberger, J. (1987). Solute transport through a stony soil. Soil Science Society of America Journal, 51?(1), 36-42. https://doi.org/10.2136/sssaj1987.03615995005100010007x
Seeger, M. (2007). Uncertainty of factors determining runoff and erosion processes as quantified by rainfall simulations. Catena, 71?(1), 56-67. https://doi.org/10.1016/j.catena.2006.10.005
Shakoor, A. y Cook, B. D. (1990). The effect of stone content, size, and shape on the engineering properties of a compacted silty clay. Environmental & Engineering Geoscience, xxvii?(2), 245-253. https://doi.org/10.2113/gseegeosci.xxvii.2.245
Shengqiang, T. y Dongli, S. (2018, jul.). Synergistic effects of rock fragment cover and polyacrylamide application on erosion of saline-sodic soils. Catena, 171, 154-165. https://doi.org/10.1016/j.catena.2018.06.033
Shukla, M. (2013). Soil Physics: An Introduction. CRC Press.
Simanton, J. R., Rawitz, E. y Shirley, E. D. (1984). Effects of rock fragments on erosion of semiarid rangeland soils. En Erosion and poductivity of soils containing rock fragments, SSSA Special Publication 13 (pp. 65-72). Soil Science Society America. https://doi.org/10.2136/sssaspecpub13.c7
Simanton, J. R. y Renard, K. G. (1982). Seasonal change in infiltration and erosion from USLE plots in southeastern Arizona. Hydrology and Water Resources in Arizona and the Southwest, 1?(1), 37-46. http://hdl.handle.net/10150/301305
Smets, T., López-Vicente, M. y Poesen, J. (2011). Impact of subsurface rock fragments on runoff and interrill soil loss from cultivated soils. Earth Surface Processes and Landforms, 36?(14), 1929-1937. https://doi.org/10.1002/esp.2220
Sohrt, J., Ries, F., Sauter, M. y Lange, J. (2014). Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena, 123, 1-10. https://doi.org/10.1016/j.catena.2014.07.003
Stauffer, F. y Jussel, P. (1990). Spatial variability of unsaturated flow parameters in fluvial gravel deposits. En K. Roth, W. A. Jury, H. Flühler y J. C. Parker (eds.), Field-Scale Water and Solute Flux in Soils (1.a ed., pp. 119-128). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9264-3_14
Tetegan, M., Korboulewsky, N., Bouthier, A., Samouëlian, A. y Cousin, I. (2015). The role of pebbles in the water dynamics of a stony soil cultivated with young poplars. Plant and Soil, 391?(1-2), 307-320. https://doi.org/10.1007/s11104-015-2429-1
Tetegan, M., Nicoullaud, B., Baize, D., Bouthier, A. y Cousin, I. (2011). The contribution of rock fragments to the available water content of stony soils: Proposition of new pedotransfer functions. Geoderma, 165?(1), 40-49. https://doi.org/10.1016/j.geoderma.2011.07.001
Tetegan, M., Richer de Forges, A. C., Verbeque, B., Nicoullaud, B., Desbourdes, C., Bouthier, A., Arrouays, D. y Cousin, I. (2015). The effect of soil stoniness on the estimation of water retention properties of soils: A case study from central France. Catena, 129, 95-102. https://doi.org/10.1016/j.catena.2015.03.008
Thoma, M. J., Barrash, W., Cardiff, M., Bradford, J. y Mead, J. (2014). Estimating unsaturated hydraulic functions for coarse sediment from a field-scale infiltration experiment. Vadose Zone Journal, 13?(3), 0. https://doi.org/10.2136/vzj2013.05.0096
Torri, D., Poesen, J., Monaci, F. y Busoni, E. (1994). Rock fragment content and fine soil bulk density. Catena, 23?(1-2), 65-71. https://doi.org/10.1016/0341-8162(94)90053-1
Tromble, J. M., Renard, K. G. y Thatcher, A. P. (1974). Infiltration for three rangeland soil-vegetation complexes. Journal of Range Management, 27?(4), 318-321.
Tromble, J. M. (1976). Semiarid rangeland treatment and surface runoff. Journal of Range Management, 23?(3), 251-255.
Unger, P. W. (1971). Soil profile gravel layers: I. effect on water storage, distribution, and evaporation. Soil Science Society of America Journal, 35?(4), 631-634. https://doi.org/10.2136/sssaj1971.03615995003500040041x
Urbanek, E. y Shakesby, R. A. (2009). Impact of stone content on water movement in water-repellent sand. European Journal of Soil Science, 60?(3), 412-419. https://doi.org/10.1111/j.1365-2389.2009.01128.x
Valentin, C. y Casenave, A. (1992). Infiltration into Sealed Soils as Influenced by Gravel Cover. Soil Science Society of America Journal, 56?(6), 1667-1673. https://doi.org/10.2136/sssaj1992.03615995005600060002x
Valentin, C. (1994). Surface sealing as affected by various rock fragment covers in West Africa. Catena, 23?(1-2), 87-97. https://doi.org/10.1016/0341-8162(94)90055-8
Van Wesemael, B., Poesen, J., Kosmas, C. S., Danalatos, N. G. y Nachtergaele, J. (1996). Evaporation from cultivated soils containing rock fragments. Journal of Hydrology, 182?(1-4), 65-82. https://doi.org/10.1016/0022-1694(95)02931-1
Van Wesemael, Bas, Mulligan, M. y Poesen, J. (2000). Spatial patterns of soil water balance on intensively cultivated hillslopes in a semi-arid environment: The impact of rock fragments and soil thickness. Hydrological Processes, 14?(10), 1811-1828. https://doi.org/10.1002/1099-1085(200007)14:10<1811::AID-HYP65>3.0.CO;2-D
Van Wesemael, Bas, Poesen, J. y de Figueiredo, T. (1995). Effects of rock fragments on physical degradation of cultivated soils by rainfall. Soil and Tillage Research, 33?(3-4), 229-250. https://doi.org/10.1016/0167-1987(94)00439-L
Van Wesemael, B., Poesen, J., De Figueiredo, T. y Govers, G. (1996). Surface roughness evolution of soils containing rock fragments. Earth Surface Processes and Landforms, 21(5), 399-411. https://doi.org/10.1002/(SICI)1096-9837(199605)21:5<399::AID-ESP567>3.0.CO;2-M
Veihmeyer, F. J. y Hendrickson, A. H. (1931). The moisture equivalent as a measure of the field capacity of soils. Soil Science, 32?(3), 181-194. https://doi.org/10.1097/00010694-193109000-00003
Verbist, K., Baetens, J., Cornelis, W. M., Gabriels, D., Torres, C. y Soto, G. (2009). Hydraulic conductivity as influenced by stoniness in degraded drylands of Chile. Soil Science Society of America Journal, 73?(2), 471. https://doi.org/10.2136/sssaj2008.0066
Verbist, K. M. J., Cornelis, W. M., Torfs, S. y Gabriels, D. (2013). Comparing methods to determine hydraulic conductivities on stony soils. Soil Science Society of America Journal, 77?(1), 25-42. https://doi.org/10.2136/sssaj2012.0025
Verbist, K., Torfs, S., Cornelis, W. M., Oyarzún, R., Soto, G. y Gabriels, D. (2010). Comparison of single and double-ring infiltrometer methods on stony soils. Vadose Zone Journal, 9?(2), 462-475. https://doi.org/10.2136/vzj2009.0058
Von Bennewitz, E. y Aladro, J. (2017). The effects of rainfall intensity and rock fragment cover on soil hydrological responses in central Chile. Journal of Soil Science and Plant Nutrition, 17?(3), 781-793. https://doi.org/10.4067/S0718-95162017000300017
Wang, H., Xiao, B., Wang, M. y Shao, M. (2013). Modeling the soil water retention curves of soil-gravel mixtures with regression method on the loess plateau of China. PLoS One, 8?(3), 1-11. https://doi.org/10.1371/journal.pone.0059475
Wang, T., Lin, L. y Tsai, Y. (2017). Effect of gravel content on saturated hydraulic conductivity in sand. En Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls (pp. 163-169). Japón: Springer. https://doi.org/10.1007/978-4-431-56205-4_15
Wang, X., Li, Z., Cai, C., Shi, Z., Xu, Q., Fu, Z. y Guo, Z. (2012). Effects of rock fragment cover on hydrological response and soil loss from Regosols in a semi-humid environment in South-West China. Geomorphology, 151-152, 234-242. https://doi.org/10.1016/j.geomorph.2012.02.008
Warrick, A. W. y Fennemore, G. G. (1995). Unsaturated water flow around obstructions simulated by two-dimensional Rankine bodies. Advances in Water Resources, 18?(6), 375-382. https://doi.org/10.1016/0309-1708(95)00016-C
Wegehenkel, M., Wagner, A., Amoriello, T., Fleck, S., Meesenburg, H. y Raspe, S. (2017). Impact of stoniness correction of soil hydraulic parameters on water balance simulations of forest plots. Journal of Plant Nutrition and Soil Science, 180?(1), 71-86. https://doi.org/10.1002/jpln.201600244
Wilcox, B. P., Wood, M. K. y Tromble, J. M. (1988). Factors influencing infiltrability of semiarid mountain slopes. Journal of Range Management, 41?(3), 197-206. https://doi.org/10.2307/3899167
Yair, A. y Klein, M. (1973). The influence of surface properties on flow and erosion processes on debris covered slopes in an arid area. Catena, 1, 1-18. https://doi.org/10.1016/S0341-8162(73)80002-5
Yang, Y., Wang, Q. y Zhuang, J. (2013). Estimating hydraulic parameters of stony soils on the basis of one-dimensional water absorption properties. Acta Agriculturae Scandinavica, Section B —Soil & Plant Science, 63?(4), 304-313. https://doi.org/10.1080/09064710.2012.762424
Yuanjun, Z. y Ming’an, S. (2006). Estimating saturated hydraulic conductivity of soil containing rock fragments with disc infiltrometer. Transactions of the Chinese Society of Agricultural Engineering, 22?(11), 1-5.
Zavala, L. y Jordán, A. (2008). Effect of rock fragment cover on interrill soil erosion from bare soils in Western Andalusia, Spain. Soil Use and Management, 24?(1), 108-117. https://doi.org/10.1111/j.1475-2743.2007.00139.x
Zavala, L. M., JordáN, A., Bellinfante, N. y Gil, J. (2010). Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment. Soil Science and Plant Nutrition, 56?(1), 95-104. https://doi.org/10.1111/j.1747-0765.2009.00429.x
Zeng, C., Wang, Q. y Zhang, F. (2012). Evaluation of hydraulic parameters obtained by different measurement methods for heterogeneous gravel soil. Terrestrial, Atmospheric and Oceanic Sciences, 23?(5), 585-596. https://doi.org/10.3319/TAO.2012.05.22.03(WMH)
Zhang, W., Wei, C., Li, Y., Wang, G. y Xie, D. (2011). Effects of rock fragments on infiltration and evaporation in hilly purple soils of Sichuan Basin, China. Environmental Earth Sciences, 62?(8), 1655-1665. https://doi.org/10.1007/s12665-010-0650-z
Zhang, Y., Zhang, M., Niu, J., Li, H., Xiao, R., Zheng, H. y Bech, J. (2016). Rock fragments and soil hydrological processes: Significance and progress. Catena, 147, 153-166. https://doi.org/10.1016/j.catena.2016.07.012
Zhongjie, S., Yanhui, W., Pengtao, Y., Lihong, X., Wei, X. y Hao, G. (2008). Effect of rock fragments on the percolation and evaporation of forest soil in Liupan Mountains, China. Acta Ecologica Sinica, 28?(12), 6090-6098. https://doi.org/10.1016/S1872-2032(09)60014-7
Zhongjie, S. (2012). Effect of rock fragments on macropores and water effluent in a forest soil in the stony mountains of the Loess Plateau, China. African Journal of Biotechnology, 11?(39), 1220-1226. https://doi.org/10.5897/AJB12.1450
Zhou, B. B., Shao, M. A., Wang, Q. J. y Yang, T. (2011). Effects of different rock fragment contents and sizes on solute transport in soil columns. Vadose Zone Journal, 10?(1), 386-393. https://doi.org/10.2136/vzj2009.0195
Zhou, B., Shao, M., Shao, H., Ming’an, S. y Hongbo, S. (2009). Effects of rock fragments on water movement and solute transport in a Loess Plateau soil. Comptes Rendus Geoscience, 341?(6), 462-472. https://doi.org/10.1016/j.crte.2009.03.009
Eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.